UNIT i DESIGN PATTERNS

GRASP: Designing objects with responsibilities —
Creator — Information expert — Low Coupling — High
Cohesion — Controller - Design Patterns —
creational - factory method - structural — Bridge —

Adapter - behavioral — Strategy — observer



General Responsibility
Assignment Software Patterns
(GRASP)

Guidelines for assigning responsibility
to classes and objects

in object-oriented design.



Introduction

GRASP is created by Craig Larman

— To encompass nine OO design principles related to creating responsibilities for

classes
GRASP = General Responsibility Assignment S/w Patterns (or Principles)

Name chosen to suggest the importance of

These principles can be viewed as design patterns

— |t offer benefits similar to the classic "Gang of Four” patterns



GRASP

* This approach to understand and using design principles is
— B f i ibilit

= All patterns ideally have suggestive names

* GRASP patterns communicate

— Fundamental principles of responsibility assignment in object design



Responsibility-Driven Design (RDD)

* GRASP patterns are used to assign responsibility to objects

* Their use results in a RDD for Object Orientation (00)

— Contrast to (the more traditional) Data-Driven Design

= With this point of view,




Responsibilities

* GRASP is a learning aid for OO design with responsibilities

— Responsibilities are assigned to classes of objects during object design.

= UML defines a responsibility as "a contract or obligation of a classifier”

* These responsibilities are of the following two types:

1. Doing responsibilities of an object
2. Knowing responsibilities of an object



Types of Responsibility

* Doing responsibilities of an object include:

— Doing something itself, such as creating an object or doing a calculation
— Initiating action in other objects

— Controlling and coordinating activities in other objects

* Knowing responsibilities of an object include:
— Knowing about private encapsulated data
— Knowing about related objects

— Knowing about things it can derive or calculate



Responsibility in NextGen POS

Doing Responsibility

— “A Sale is responsible for creating SalesLineltems"

Knowing Responsibility

— “A Sale is responsible for knowing its total”



Methods in Assigning Responsibilities

* Responsibilities are implemented using methods

_ That eit : lat it —_—

* Example:

— Sale class define a method getTotal() to know its total;

— To fulfill that responsibility, object of Sale may collaborate with other objects,

such as sending agetSubtotal() to each SalesLineltemn object asking for its

subtotal.

* UML Interaction diagram helps to identify

— The assignment of responsibilities to software classes



—
s

L @ N 9 @ W

GRASP patterns

Creator
Information Expert
Low Coupling
Controller

High Cohesion
Polymorphism
Indirection

Pure Fabrication

Protected Variation

All patterns answer some software problem,

— These problems are common to almost every s/w development project.



What to look for in GRASP patterns

* Low Coupling

— Reducing the impact of change

High Cohesion

— Similar functionality in the same place

Low representational gap (LRP)

— Minimal conceptual gaps






